How to make the most of your AncestryDNA matches: Part 6 – A science-free walk through xDNA, yDNA, and mtDNA

How to make the most of your AncestryDNA matches:  Part 6 – A science-free walk through xDNA, yDNA, and mtDNA

We promised to keep this series as science-free as possible, and instead focus on the practical use of AncestryDNA tests to identify your ancestors. We’re going to keep that promise here, but we want to say a few words about other types of DNA tests you can’t get from Ancestry, and how xDNA, yDNA, and mtDNA can be useful! Just remember, we’re generalizing a bit here, and if you want the detailed science behind all of this, Google has many great reads.

yDNA and mtDNA

yDNA and mtDNA come only from your father and your mother, respectively, and change very little over the generations. These tests are often written off in the genealogical community, because they won’t, by themselves, lead you to how you are matched with someone, or how many generations back you might match them.

dna 6 - 600px-female_dna_paths
mtDNA inheritance chart. From http://www.isogg.org.

For example, if our Michael has a yDNA test and he matches “Frank” who shares the same yDNA…it tells us next to nothing. From the test we know that on Michael’s paternal line we have proved he’s matched to Frank…but there’s no way to tell how. It could be 1000 years ago we all had a MRCA, or it could be that Frank’s 4xGGF was a brother to ours, but there’s no way that kind of range will narrow it down by itself.

There are two uses of yDNA and mtDNA, however, that makes these some of the most powerful tests you can take:

Geographical location

Unlike “ethnicity” estimates we see from all the major testers, yDNA and mtDNA can be very effective in pinpointing very accurately the location of your ancestors on the planet. The standard (Autosomal) DNA tests from Ancestry rely on a small global sample of historical DNA (16,000 samples currently), and human created Family Trees, to mathematically try and guess where our ancestors were 800-1000 years ago. They are looking for little shreds of DNA to trace back, and it’s very small amounts because Autosomal DNA gets cut in 1/2 for each side of a lin ever generation. However y/mtDNA doesn’t change over the generations and so we know very accurately where those ancestors were, based on where the bodies were found. This is especially important for African American genealogy, when there are nearly no records of origin before our ancestors were taken from Africa. These tests can be very accurate, and place your ancestral group in to very small physical and/or social (tribal) locations.

dna 6-ydna_migrationmap_(ftdna2006)
yDNA groups, and how they migrated over the centuries. From FamilytreeDNA.com.
Brick wall research

In our example above, we know for a scientific fact that Michael and Frank share an MCRA along their paternal line. The same is true for women who have an mtDNA match. While that again doesn’t help us much if we have no information, it’s invaluable if we have a good guess on how we’re related. Let’s go back to our DNA Painter walkthrough to see how we wish we had yDNA and mtDNA tests.

To recap from last week’s post, we have two lines of DNA tests that we know are connected, and we have narrowed down the MCRA for both a cluster of AncestryDNA matches and on our line, but we don’t know how they connect. So, we have two couples (Jacob/Maria Kupsch, and Joseph/Dorothy Haasl) that we know match, most likely 2-3 generations above them. Each of them have 8 potential match relatives, and we have 4 known relatives, so we’re facing 32 ancestors that might be our MCRA.

But, if we can confirm the y/mtDNA from those 4 relatives, whom all died over 100 years ago, because that DNA doesn’t change between generations. That means a direct male relative from Jacob (say his son’s, son’s, son’s, son’s DNA) will confirm Jacob’s yDNA. Same for Maria, and a direct female relative. If we could yDNA test relatives of both Jacob and Joseph, and mtDNA for both Maria and Dorothy we would have about a 25% chance of finding an immediate match. And, if say Maria and Dorothy share the same mtDNA we just figured out we need to focus our research only on both of their maternal lines to make our match. If we don’t find that match, we just eliminated 25% of our potential match points, so now instead of building out 32 ancestors to find our match, we’re down to 24. But even better, if we can go one level up and do the same thing, we can eventually narrow this down to where we share an MCRA.

Here’s a great blog post that breaks this down a real-world example from Roberta Estes: (Mitochondrial DNA Bulldozes Brick Wall)

xDNA

dna 6-gendmatch xGoing back to the GEDmatch installment of this series (How to make the most of your AncestryDNA matches: Part 4 – How to quickly, and effectively, use GEDmatch), there was a column in our DNA matches that showed the amount of xDNA that we matched other testers. The good news is that all of the major test kits include xDNA measurements in their most basic test. The bad news is, it’s unlike the other types we’ve talked about, and it’s almost useless. With one very valuable exception.

It would be highly unlikely we could ever build out a family match with xDNA, and the cM you share with someone tells you almost nothing about close of a match you are with them. The main value of xDNA is if you do match someone, it narrows down your link to that match in a very powerful way. xDNA is inherited in a unique pattern that going back several generations can eliminate more than 50% of your tree as a potential match.

Women will inherit an X chromosome from both their mother and their father, but men will inherit an X from only their mother. Going back to High School Biology, we quickly remembered that women have an XX chromosome, while men have XY!

But, the value for us comes in when we build out our potential ancestor’s chart, using that inheritance pattern. So, if we have a female test subject who has an unknown xDNA match, we know it’s not from her Father’s Father’s line because men only inherit their X from their mothers. Going back 2 generations, we just eliminated 25% of the potential matches. If you know, from other research, that this unknown match is on their father’s line, you just confirmed it’s on the father’s mother’s line.

dna 6-x-fan
xDNA inheritance chart, from DNAeXplained

You won’t see a lot of xDNA matches, but when you do, Google one of the many xDNA inheritance fan charts, and start to see if you can eliminate suspects in how you match. It could bring you much closer to where to hunt for your MCRA.

Here’s a great break down of xDNA from DNA Explained, with more links to more detail as well: (Who Tests the X Chromosomes)

Just know that all of this work will have to be in GEDmatch however, since AncestryDNA doesn’t provide any information on the details of your genetic matches, and none of the tools needed to view/manage this information.

 

How to make the most of your AncestryDNA matches: Part 5 – DNA Painter’s “What are the Odds” and how to link unknown matches to your tree

How to make the most of your AncestryDNA matches:  Part 5 – DNA Painter’s “What are the Odds” and how to link unknown matches to your tree

In this installment we’re going to walk through a key tool to help narrow down where to research when you have AncestryDNA tests that match your family, but despite your research you’re not sure where they match. DNA Painter has a great tool called What are The Odds that gives us the probability of where these unmatched lines link up with our own.

We’re using a real set of unknown matches for this example. Emma Kupps (1879-1953) is a one of our favorite ancestors. She was born and raised the various logging communities that sprang up in North Central Wisconsin in the late 1800’s, but her family settled in Antigo where she graduated from Antigo High School. Within a few years she would married a logger Daniel Leonard (1868-1924), who would soon become Antigo’s Fire Chief, and years later be elected Sheriff of Langlade Coounty, Wisconsin. During his term Dan became ill with cancer, and succumbed with a significant portion of this term remaining. The governor of Wisconsin appointed Emma to the position of Sheriff to complete her late husband’s term, and she became the first woman in Wisconsin to hold the office. (Langlade Co. Historical Society)

DNA Painter has greatly narrowed down where we’re targeting our on-going research to finally break down this brick wall.

But, to family historians, she’s also near the end of a line that is a classic brick wall. Her father died young, and there’s nothing but a couple of records that indicate only the names of his parents. Plus, they are the only lines in our family that come from Bohemia, so it has the combined brick walls of classic genealogy and DNA results.

We’ve identified a group of AncestryDNA matches that have strong Bohemian roots and match descendants of Emma. We used Michael’s Great Uncle as our target DNA match, since he’s the oldest generation tested on that line, and we built a master tree that links as many of the unknown DNA matches as we could. We ended up with 8 AncestryDNA matches that we could link together in a cluster.

The cluster all share Jacob Haasl and Dorothy (Johannek) Haasl as their MCRA, but we haven’t been able to build a link between Great Uncle Leonard and the Haasl’s. So, we’re going to turn to DNApainter’s “What are the Odds” tool, to help identify where we’re most likely linked to the cluster.

When you open “What Are the Odds?”, it will present a box for the most recent common ancestors (MCRA). The options are to “Edit Names”, “Add Child”, or “Add Parent”. In this case, we’re going to edit the name, and add the cluster’s MCRA, Joseph and Dorothea Haasl. When we enter that information, we’re presented with the same 3 choices, but this time we’re going to start building a line to one of the DNA matches but selecting “Add Child” and entering the name of the child that makes up the first step to our DNA match. At first we were surprised how quickly we built out a tree, but it’s because we’re not entering all the data we’d need for a regular tree, just the names!

dna 5-dna painter, 1 line
The first line of our unknown DNA matches, with the amount of cM they match us entered

When we reached a DNA match we entered the cM value that matches our known DNA test. We repeated this step for as many matches as we’ve identified. This works well with a single match, but better with more. In our case we identified 8 matches, so we’re built them all out. Now we’ll really see the power of this tool.

dna 5-dna painter, all matches
All 8 of the AncestryDNA matches mapped out, with amount of matching cM

Now that we’ve entered what’s known, it’s time to start mapping out our guesses. In fact, the entire purpose of this tool is to compare the likelihood of at least 2 hypotheses matching the entered cM, and from those likelihoods we can focus on where it’s most likely we all share a most MCRA.

The most likely connection for Jacob and Mary Keips’ line is her parents. We don’t know her maiden name, or birth date, but if we guess that she was born in 1820-1825 it’s reasonable to guess she is a sibling of either Jacob Haasl or Dorothy (Johannek) Haasl, so let’s build that out as option 1. We’ll add an “Unknown 3xGGP” to Joseph and Dorothy, and add a child called Jacob/Mary (because it could be either!). From there we’ll build down to the Great Uncle that is the known DNA match, and select “Use as Hypothesis”.

dna 5-great uncle added
All 8 matches, and a hypothetical link to our known DNA match

It shows us a probability of “1” because DNA painter doesn’t show you raw percentages, it shows you comparative probability of one match vs. another. For example, if you enter two hypotheses and one returns “1” and the other returns “2”, we’ll know the second one is twice as likely as the first. In this case, we have no other hypotheses entered, so it shows just a 1.

Given the cM match, it’s most likely that we match the cluster with Great Uncle Leonard’s 3x to 5x GGP’s, so we built out the same line as above, but this time with one more unknown ancestor above Jacob/Dorothy Keips, which would then make Uncle’s MCRA a 4xGGP.

When we built that out, and selected the second “Great Uncle Leonard” as a hypothetical, it soared to a whopping score of “1174” vs. the first “Great Uncle Leonard!! Given that we have 1174 for one possible link and 1 for the other, DNA painter just told us that while not impossible, we’re looking for a 4xGGP as our MCRA, not 3xGGP. Not great news, since now we have to go at least two more generations back, and to build this match back further we’re going to have to dig deep into 18th Century European genealogical records. That’s not our strong suit. But, at least now we have a clear picture of where we’re looking to link these groups.

dna 5-hypothesis 2
It’s looking 1174 time more likely that our MCRA is a 4xGGP than a 3xGGP!

Since the range of likely Great Grandparents is 3x-5x, we then built this hypothetical out to our match’s 5xGGP, and we see the same score of 1174 from a hypothetical 5xGGP. That means it’s equally likely that our link to this cluster of match is through our Great Uncle Leonard’s 4xGGP or this 5xGGP, but it’s almost certainly NOT through his 3xGGP.

While in some ways this is disappointing, and we’d hoped to come through with a match, this is actually a huge piece of this brickwall puzzle. When we started the work on this DNA cluster we knew that John Keips/Kupps had migrated from Bohemia and, at the time of his death, his wife thought his father was Jacob D. Kupps when she filled out her husband’s death certificate. From their marriage certificate we knew John’s mother, and Jacob’s wife, was Mary. We also knew we had a large cluster of DNA matches who came from the area of Bohemia.

dna 5-hypothesis 3Just by going through that cluster, building out a central tree that links them all, we found a great lead that likely shows John’s arrival information, along with approximate birth years for Jacob, Mary, and John…as well as John’s previously unknown siblings who seem to have a long history together in the US, and left many records. That means instead of having exhausted all the on-site research we could do on the John’s line, we now have a large number of leads to follow and see if we can push back another generation from both Jacob and Mary. We now know enough to start targeting death certificates for both, which may contain critical names, as well as 6 more marriage/death certificates to look for Mary’s maiden name, as well pieces of evidence that link our Jacob to the arrival Jacob. And, DNA Painter has greatly narrowed down where we’re targeting our on-going research to finally break down this brick wall.

We also have about 20 trees integrated into the master tree, and all of their owners are likely working towards the same goal as we are. As they do their research, and new DNA matches are added to the mix over the years, it’s likely one of us is going to have that piece of the puzzle we’re missing, and finally put it all together.

How to make the most of your AncestryDNA matches: Part 4 – How to quickly, and effectively, use GEDmatch

How to make the most of your AncestryDNA matches: Part 4 – How to quickly, and effectively, use GEDmatch

dna 4 - featured image(A quick note, we’re using the newer version of GEDmatch called “Genesis” for this walkthrough. It’s soon to be the only GEDmatch, but if you’re not familiar with it, please use GEDmatch Genesis for this example.)

Back in our 1st installment of this series (Link), we suggested that you upload your AncestryDNA results to GEDmatch. We’re hoping you’ve done that, and we’re going to walk you through why this site is so powerful.

GEDmatch is a private site that is run out of Florida, for the purpose of allowing genealogists to upload their tests from all commercial DNA providers, with a complete set of tools to help us make matches between different tests. The key to GEDmatch is both its great tools, as well as it being open and public with all of the tests that are uploaded, but that’s also the warning that goes with GEDmatch: your tests are searchable by anyone. Your raw data is never shared, but your match information is openly shared to anyone that joins, including law enforcement. There have been a lot of stories shared about how GEDmatch was used to solve nearly 30 cold cases (so far), and reunited 10,000 adopted children with their birth families. There is a real chance your uploading of your DNA data is going to unearth secrets that your family doesn’t want unearthed.

At first GEDmatch was bewildering and confusing to us…and most of the walk-throughs we saw online were so detailed, it only further confused us.

We’ll be honest, at first GEDmatch was bewildering and confusing to us…and most of the walk-throughs we saw online were so detailed, it only further confused us. So, we’re going to focus more on the functionality GEDmatch than the technical details. This is still rather advanced, but when you practice with your matches, and then search for the more the technical details, you’ll find it makes a lot more sense.

Each test uploaded to GEDmatch is assigned a kit number, and most of the tools will dna 4 - kitsrequire you to enter either your or your target match’s kit number. Especially when you have multiple kits you’re working with, it will be helpful to have your main page with all of your kit #’s open while you work in other tabs. It’s easier to cut and paste.

One-to Many Comparison

On your home screen you will see all of your kits, and if you click a kit # you’ll be taken to the first tool: One-to-Many Comparison. When the first box comes up, to start with we suggest you filter on only those matches that are 20cM and up. A whole list of names and numbers will pop up, and this is the list of everyone who’s uploaded a kit to GEDmatch that matches your kit. Let’s walk through what each of the boxes mean:

dna 4 - one to many 1

Select – You can pick at least 3 kits here and shortcut several of the tools by clicking on the “Visualization Options” button on the top header.

Kit #, Name (Alias), Email – This the information for you match, including a REAL email address! No more sending an Ancestry message, never hearing anything, and wondering if they ever log into Ancestry. Some people (and we recommend this for everyone managing someone else’s kit) use an alias for their testers name.

dna 4 - one to many 2

GED/Wiki Tree – You can enter a GEDcom-format family tree, or a link to your WikiTree, to help your matches find that MCRA. We’ll walk through this later.

Age – How long has the kit been on GEDmatch

Type – The chip version your test was from. Ignore this, it won’t matter for what we’re doing

Sex – If the GEDmatch uploader didn’t select a Sex for their tester, this will be U

Haplogroup – Shows which group you’re line is in if you took a mtDNA (mothers) or YDNA (fathers) DNA test. Ancestry doesn’t offer these tests, and if there are values in this for your matches, ignore them for now.

dna 4 - one to many 3

Autosomal – This is the type of DNA test Ancestry offers, and it’s what you think of when you think of DNA tests (ie: 50/50 inheritance from mom and dad). This is the area we’ll most care about, and it lists the total cM’s you share with the match and the largest piece of match in your samples. The “Gen” value gives you an estimate of how many generations separate you and this match.

X-DNA – We won’t cover this much, although it will get at least a mention in later post. X-DNA won’t be of much value, except in one very specific way.

You can click the header of each column to sort the results, but in this case let’s take a look at one of the higher cM matches on my list that I don’t yet know who they are.

One-to-One Autosomal DNA Comparison

dna 4 - kit match

For our example we’re going to select kit #M717701, especially since they have a family tree shared for this match. Clicking on the “GED Wiki” link in the GED column opens a link to their public tree on wikitree.com, but reviewing all of the surnames there, I don’t see any that jump out at me. I’m going to copy the kit # and go back to the home screen, to check out our next tool: One-to-One Autosomal DNA Comparison

Here’s where you actually confirm your matches to other kits, and start to get a view into the actual DNA segments that all of these matches are built off of. In the Ancestry tool, you take their word for it that you match someone, but this tool will actually prove you’re related.

dna 4 - onetoone match
The blue indicates that I match the target match on Chromosome 14, and it indicates the position of the start of the match and the end. Above the blue, the yellow show that it’s a match to half my chromosome, which would be expected if I inherited that bit from just my mother or just my father.

Entering our kit # first box, and pasting in M717701 in the second, we get a picture of exactly where we match, or if we actually share no significant DNA (it happens!). In this case, we match the sample on Chromosome 14, and the exact start/stop positions of the match are listed. (We’ll come back to that in our next post, about DNApainter).

If you scroll all the way down to the bottom there’s more detail about this match, the most important info showing the estimated number of hops to our Most Common Recent Ancestor (MCRA). In this example it shows as 4.4 between us and the GGP that we share, dna 4 - onetoone detailbut it’s best to double that number and use it to estimate the number of people between you and your match. 4.4×2 is 8.8, so we’ll round up to 9, and when it comes time to build out the link between us we’ll expect that it’s likely 4 or 5 ancestors up to the MCRA, and 5 or 4 ancestors back down to the match. Without even going to the “Shared cM Project” graph, we can guess that it’s most likely the MCRA we’re looking for will be a 3xGGP (4 ancestors from me) or 4xGGP (5 ancestors from me). But, we need to narrow down which side of the family this match is on, which brings us to our next tool: People who match both, or 1 of 2 kits.

People who match both, or 1 of 2 kits

This tool is very powerful, and where we do most of our work, and make most our matches. This is especially true if you have more than one kit in GEDmatch, because you can quickly narrow down target matches to either being on your mother’s or father’s side of the family. For example, I have my mother’s and a paternal uncle’s kits uploaded, so if I use GEDmatch to show me all of the kits match my test and my target test, I can pretty quickly see if it’s on my mother’s side, or my father’s. Plus, I have many known matches that we don’t manage, so we can usually get pretty lucky on narrowing it down further.

dna 4 - matching 2 resultsFor our example, we ran this test on our target user from above and we see that they match my mom’s test also, so we’re looking at a MCRA on her side. We just cut our search in half! Looking more closely, her cousins on her father’s side have maybe a dozen tests in GEDmatch, but none of them are listed here. It’s very likely then, given the volume and closeness of the paternal cousins’ tests that if this was on my mom’s father’s side, they would show up in this list…so we’re going to assume this match is on my mom’s mother’s side. We just took the total number of potential MCRA’s down in half again, so we’re really narrowing in! Given that we already have 21 of 32 5xGGP’s identified in that branch of the tree, odds are pretty good we’re going to find a common surname.

dna 4 - matching 2 ancestry tree, narrowed
5 minutes on GEDmatch and we’ve narrowed the search for our MCRA down to this narrow section of our tree!

In this case, we’re going to have to do what we did in our last post (Link), which corresponds to DNA secret #2: we’ll spend most of our time building out other people’s trees! Looking at the GED Wiki tree they have up, there’s a decent 4 generation tree on the match’s father’s side, but only a mother’s name and birth/death. Since nothing on the father’s side jumps out, we’ll build out their mother’s side first.

The other huge advantage at this point with GEDmatch is that we have the direct email address of our relative immediately, and so, once we’ve validated we’re a match with the 1:1 tool, we can reach out to what’s likely their regular email account and see if they have more information.

DNA Triangulation

Triangulation is confirming that not only does your test match the target’s kit, but that another known ancestor’s kit matches as well. In the above example we confirmed I matched with the “One-to-One” tool, and we linked my mom with the “People who match both” tool, but technically we’re just guessing my mom’s kit also matches the target kit. I’ve never had it be wrong, but to really prove the match it would be best to confirm the matching segment for myself, my mom, and the target all match. There’s a GEDmatch “Tier1” tool for Triangulation (and we find it VERY worth it to donate $10/month to get the Tier1 tools!), but it’s just about as easy to do a One-to-One test between my mom and the target to do a full triangulation.

Going forward

Once we prove out the family tree link to our “Cake” ancestor, and we have our MCRA, we will have really narrowed down how we’re linked to everyone else on the “People who match both” list. There’s nearly 50 matches on that list that we now have very solid evidence on who the MCRA is. Even if we have to build out most of those trees manually, it’s likely we already have pieces of those trees built out when we made the first match.

That being said, it’s one of the reasons it’s so frustrating that Ancestry has such weak tools. If we could combine Ancestry’s strong base of Public Trees with GEDmatch’s tool set, our effectiveness when making DNA matches would be extraordinary! It’s also why it’s so important to upload/link a GEDCOM file to your GEDmatch tree. It doesn’t have a great interface, but even ugly tree’s make this search much, much easier!

Using just these 3 simple tools you can build out many matches using GEDmatch. Just keep practicing, and quickly it’s like you’ve been using it for years. And, as your skill in the tool grows, those overly technical online walk-throughs will help further unlock the power of AncestryDNA tests!

In our next installment, we’re going to use DNApainter to narrow down those matches were we have no data on how we’re connected to a verified match, so we know where to focus our traditional genealogical research, and we’ll talk about some of the more advanced topics we won’t dive into too deeply in this series.

How to make the most of your AncestryDNA matches: Part 2 – Leveraging your strongest matches to make quicker work of your more challenging matches!

How to make the most of your AncestryDNA matches: Part 2 – Leveraging your strongest matches to make quicker work of your more challenging matches!

Last week we discussed the (very!) basics of DNA testing, and we’re going to take that jumping off point and walk you through how we identify our AncestryDNA matches.

So, congratulations you got your test results back! Now what?

Check out our Ethnicity, and then move on

We wrote extensively why Ethnicity is not a valid part of genealogy and it often does more have than good (It’s time to stop giving attention to “Ethnicity” and genetic admixture), but everyone wants to look at it first (including us!), so give it a read through…and then be done with it. You can go back when you’re bored, but for now let’s get to some real work!

Export your results to GEDmatch

AncestryDNA has the largest DNA database, and the largest set of trees to help establish DNA matches, but their toolset isn’t even basic. Their tools are essentially non-existent. GEDmatch is a free site that provides a great tool set, and results there are used for some of the most important tools you’ll use as you progress deeper in mining your DNA matches. Plus, tests from all of the major sites can be compared on GEDmatch, so you will find 23andMe and Family Tree DNA kits matched to your AncestryDNA there. You’ll also get direct email addresses to your match!

Fair warning however, this is a publicly accessible database that’s specifically used to allow strangers to find your DNA and match it to theirs. This is the tool that’s being used by law enforcement to close cold murder and rape cases, and some people are worried about how publicly accessible their data may be. We don’t share those concerns, and we’re comfortable with their privacy policy and we know we can permanently take our data down if we want to (they do NOT share your raw DNA data, only provide matching segments), so the work we can do there is worth the trade-offs. We wrote about this when the Golden State Killer was ID’d off of GENmatch (Family History is a hobby…but DNA is serious business).

Assuming you want to move forward, we suggest that you start the transfer process first thing since it will take a few days for GEDmatch to full analyze your Raw DNA data.

To download your data from AncestryDNA, follow the instructions here: Download your DNA results

To upload your data to GEDmatch, follow the instructions here: Upload your AncestryDNA results to GEDmatch

We’ll come back to GEDmatch in a future post in this series, as we dive deeper into some of the great tools available there.

Evaluating your matches

Now, let’s get to the first matches! That first look at what’s likely to be 2000-3000 DNA matches is overwhelming, but we’re going to break everything into smaller and smaller bits until we can really start to leverage these matches.

If you followed our Part 1 advice of building our your tree to your 4xGGP, with any luck you’ll now have matches with “Hints” (indicated by the little shaky leaf next to the “Match” button). In the “Filter’s” section, click on Hints, and it should show you only your matches with the shaky leaf. When you click “View Match” button, the path of connection between you and your match should come up.

Screen Shot 2018-12-08 at 8.25.49 PMIn the example to the left, our Most Recent Common Ancestor (MRCA) is our Great Grandparents, and Ancestry has mapped out each of the steps between us. Given AncestryDNA’s limited tool set, we only have a few ways to successfully build out our matches. The first of these was Hints, the next one we’ll use is “Notes”

How to use “Notes” to quickly identify your matches

There are literally a million ways of using the Notes fields in AncestryDNA, and we don’t claim this to be the best way…or even a good way. It’s just the way we’ve found most helpful.

For each MRCA we assign a Line #, and in this example Charles and Rhoda Smith are Line 11. This is the note we’ll use:

Rick-MMF (Not Researched, Charles Henry Smith and Rhoda Upper) – Line 11

Which breaks down as:

  • Rick-MMF – We do our genealogy from the standpoint of our son, Michael, and so this helps quickly identify that the match on Michael’s Father’s Mother’s Mother’s Father’s line.
  • Not Researched – Ancestry, or other quick research like a “Notes” entry has said this is a match, but we haven’t gone through yet and confirmed the genealogy nor have we added this match to our tree yet.
  • Charles Henry Smith and Rhoda Upper – The Most Recent Common Ancestor (MCRA) between us and our match.
  • Line 11 – The line # for these MCRA’s.

These notes help us quickly identify the MCRA for unmatched DNA matches, they quickly identify the matches we need to work to make official, and they give us line numbers we can use later to search for all matches with the same MCRA.

An example of how we use these Notes

After we’re done identifying and validating all of the DNA matches with Hints, and we start trying to identify how other matches tie into us, and what we can learn from those ties, we’re going to start with some very limited ways to identify the MCRA and/or the path to that MCRA. In this example we have a DNA match that has an unlinked Public tree, but with a strong 48 cM of shared DNA.

Screen Shot 2018-12-08 at 8.58.50 PMWhen we click through to the test page, and select the unlinked tree, we find a dead-end: everyone is Private.

Screen Shot 2018-12-08 at 8.54.50 PM.pngIn GEDmatch we’d have a series of tools we could use to narrow down this match, but in AncestryDNA we can’t tell if this match is even Paternal vs. Maternal. But, if we go into the “Shared Matched” and look for any kits listed there that have a Note, we can click the note and see who they match. In this case, they match our Lila Miller match, which has the note we made before attached, so we know this match also is likely to be on Rick’s MMF’s line, and that they are also on Line 11. We will make the same note in this match, and return to our searching.

Screen Shot 2018-12-08 at 9.03.21 PM

These notes will be invaluable as we get into the next installment of “Making the Most of your AncestryDNA Matches”, and use Ancestry as deeply as we can to build out/prove our family trees.

Until next week, update all of your Hints with the proper Notes, and we’ll start blazing new trails!

How to make the most of your AncestryDNA matches: Part 1 – Getting started

How to make the most of your AncestryDNA matches: Part 1 – Getting started

As we approach Christmas 2018, and given the massive push to have cheap DNA tests given out as gifts this season, it seems natural to finally write a series on how to make genealogical use of a DNA test you, or your loved one, may have just taken.

We’re going to start with the very basics on how DNA testing works, and walk through both how to leverage AncestryDNA to track down ancestors as well as using GEDmatch and other advanced tools to go even deeper.

Assuming you have a few weeks before the test results are in, here are a couple of things to learn and prepare before you dive into the matches.

  • First, understand that while the commercials like to highlight the joys of learning your ethnicity, DNA testing raises serious issues that will likely come up as your journey progresses. You may uncover family relationships, both inside and outside of your family, that could have serious negative impacts on people. We’ve uncovered children born outside of marriages that were never known to the family, and we know of adopted children who were outed by tests where their parents had never told them. We wrote about an example of this last year (Dangers of DNA Testing).
  • Second, they key to effectively making matches will be a good, solid family tree through the test subject’s 4x Great Grandparents. Most of your matches made will be through 3x or 4x GGP, and in a perfect world the match will also have a good tree so the link will be obvious. We can’t over state this, or stress it enough: your success/failure of matching DNA tests from unknown relatives will rely on the quality and depth of your tree. We’ve walked through how to build a good “quick and dirty” Public tree on Ancestry (Building a good Public Ancestry.com tree – Part One: sources, citations, facts, and proof), and the process would be about the same on other sites, many of which are free.
  • It’s also important you have the tree available publicly…many of your interactions are going to be about exchanging trees to build a match. It’s ok if you have just a skeleton tree with basic information(names, date of birth/death, locations, children, etc.), but it will be key that you have something available publicly. 

Basics of DNA

The main new term/concept you’ll need for effective Genealogical DNA research is a measure of distance: centimorgan (cM). Now, it’s not technically distance…but for all intents and purposes, it’s used as a measure of distance.

What does cM measure?

Centimorgan measures length of DNA strands. More specifically, it will be used to measure the length of matching DNA segments between your test and a test that is a genetic match. For example, you have roughly 6800 cM if you take all 22 chromosomes and strung them out end-to-end, and your matches will have varying levels of matching DNA, measured by centimorgans.

How do we use centimorgans to identify matches?

Since you get about 50% of your DNA from each parent, your DNA tests will match a test from your parents with about 3400 cM. You will match a Grandparent with about 1700 cM (50% of your parent’s 50%). The more cM you match someone, the closer a relative they are, and the more likely that you will confirm a match with them. 

We’ll use both charts from ISOSG (The Shared cM Project table) and an interactive version of that chart from the DNA Painter site (Shared cM Interactive Tool), which both break down the average cM to expect with various relatives, and helps us identify where to look to establish a match. For example, if a match is 311cM then we can guess they match the person with the DNA test at around a 1st or 2nd cousin…which means our common ancestor is likely a Grandparent or Great Grandparent, which narrows down our search!

What’s next?

So, there’s the first part of this DNA journey. There’s a little homework while you wait for the test results, a basic understanding about how we’ll actually leverage the DNA to make matches, and why your basicGenealogy and a solid family tree will be key to this process. Next week, we’ll go over what to do when you first get your DNA results!

Next installment: How to make the most of your AncestryDNA matches: Part 2 – Leveraging your strongest matches to make quicker work of your more challenging matches!

Matching unmatched DNA matches by Casting a Wide Net, Part 4 – Proving the matches, and establishing a theory of connection

Matching unmatched DNA matches by Casting a Wide Net, Part 4 – Proving the matches, and establishing a theory of connection

In the first three parts of this series (Part 1, Part 2, Part 3), we went through and tagged all 288 of our Ancestry DNA results that were related to a group of matches which had Woodley/Woodson surnames in their attached trees. We then built out a common tree for as many of the matches as we could, to nail down common ancestors, and to gain clues on where these matches link up with our tree. In this installment, we leverage GEDmatch, and deductive reasoning, to identify where we think our tree will link up with their trees.

The largest DNA matches (by centimorgans) we identified in Ancestry had also uploaded their DNA results to GEDmatch, so we were able to do tests to confirm they all truly matched. The “One-to-One” matches for each of them confirmed they were all related to “Mary”. It’s not scientific to say that all 288 were actual DNA matches, but we know the core group of matches are and that a good number of the matches-of-matches are likely also legit.

X DNA is tricky, but the important use of it identifying people who you CAN’T be a match if you share X DNA.

We were also able to use GEDmatch to identify the “true” cM match amounts between various matches, and from there we leveraged the International Society of Genetic Genealogists’ table showing cM ranges and averages between various family relationships (Shared cM Project – V3). The closest match for Mary was “W.W.”, and we settled on 133cM as their match level. The most likely relationship for that level of match was with a shared Great Grandparent, with W.W. likely being a 2nd Cousin, or a 2nd Cousin Once Removed. When we fleshed out the other 12 matches on paper, they all roughly fit this notion that they matched either Mary’s Great Grandparent or Great-Great Grandparent.

female-x-chart
Inheritance pattern for females (X DNA)

The other thing that jumped out at us, unexpectedly, from GEDmatch was that some of the 5 matches there had X DNA matches as well. X DNA is tricky, but the important use of it identifying people who you CAN’T be a match if you share X DNA. For example, a person will only inherit X DNA from their mother, so if you have an X DNA match that you’re theorizing is related to someone, but there are two male relatives in a row between the two matches, that isn’t possible.

Once we built out the theoretical map between all the matches and Mary it all fit that her GGP’s could be Roman and Mary Jones, and with the DNA levels and inheritance pattern of X DNA it’s likely that Marie’s relative was a daughter of Roman and Mary. It also pointed strongly to the matching being on her mother’s side.

 

Screen Shot 2018-08-10 at 3.18.43 PM
“What are the Odds?” gives you the chances of various hypothesis’

The day after we did our work on paper with the ISOGG chart as our guidance, DNAPainter introduced a new tool called “What are the Odds?”  that does the same work we just did on paper! It’s easy, it’s awesome, and we’ll cover it in more detail in a future post. But, most importantly, it showed us that it was 77 times MORE likely that Roman or Mary Jones’s parents are our Most Recent Common Ancestor, than anyone else. It’s technically possible that our Mary is directly descended from Roman and Mary Jones, or that they are connected by 4xGGP’s…but it’s much, much more likely we’re looking for Mary’s 3xGGP’s, the parents of Roman and Mary.

Looking at Mary’s tree, and she of course has 2 maternal GGM’s. One, we have some documentation (mostly Census info with Ancestry Member Trees), but the other we had almost no information. We’re guessing the one we have little information on, Annie Caswell, might be the best lead, so we’re going to dig into her.

Samuel and Annie Caswell were born, married, and died in and around Crowder, MS. Family lore has Sam and Annie as Mary’s grandparents, but we only have Annie’s Census birth date, and no maiden name for her. About the only piece of hard information we had was that Samuel might have died in July 1974 (based on the SSDI).

Time for some old-school genealogy, to hopefully prove out the high-tech theory that points to Annie Caswell being on the Jones line.

Next in the Series: Matching unmatched DNA matches by Casting a Wide Net, Part 5 – Rolling up our sleeves and doing some genealogy